2015 Impact factor 1.417
Special Topics


EPJ B Highlight - Exact formula now available for measuring scientific success

Scientists develop formula to describe the growth of scientists’ h-index. © treenabeena (from https://eu.fotolia.com/id/84276789)

Polish team has developed equations governing the growth of authors’ h-index using an agent-based model

Scientometrics research is the science of evaluating scientific performance. Physics methods designed to predict growth based on a scale-free network have rarely been applied to this field. Now, scientists in Poland have developed an analytical method using a previously developed agent-based model to predict the h-index, probably the most popular citation-based scientific measurement, using bibliometric data. They are the very first to succeed in developing an exact formula to calculate the number of external citations and self-citations for each paper written by an author. These findings have just been published in EPJ B by Barbara Żogała-Siudem from the Systems Research Institute, Polish Academy of Sciences, Warsaw, and colleagues. It opens the door to applying this growth analysis to social network users or citations from different scientific fields.


EPJ Plus Highlight - Physical parameters matter in terms of cancer cells’ metastatic ability

Plots of single-cell trajectories stimulated by different levels of epidermal growth factor.

Scientists develop potential visual test for diagnosing invasive states of breast cancer cells

The micro-environment surrounding cancer cells is just as important as genes in regulating tumour progression. Scientists have therefore examined the biophysical and biochemical cues occurring in the vicinity of cancer cells. This represents a departure from the traditional measurement of secreted molecules, called biomarkers. The latest research in this field, recently published in EPJ Plus, found that the presence of a substance called Epidermal Growth Factor (EGF) promotes the motility of elongated mesenchymal tumour cells, which migrate depending on their adhesive properties by climbing along collagen fibres, in contrast to rounded tumour cells, which migrate in an adhesion-independent manner. These findings stem from the work of Dongil Geum and BJ Kim in the Wu biofluifics lab at Cornell University, Ithaca, New York, USA.


EPJ C Highlight - Bright sparks shed new light on the dark matter riddle

Data gathered by the detector module Lise depicted in the light yield energy plane.

Highest sensitivity detector ever used for very light dark matter elementary particles

The origin of matter in the universe has puzzled physicists for generations. Today, we know that matter only accounts for 5% of our universe; another 25% is constituted of dark matter. And the remaining 70% is made up of dark energy. Dark matter itself represents an unsolved riddle.

Physicists believe that such dark matter is composed of (as yet undefined) elementary particles that stick together thanks to gravitational force. In a study recently published in EPJ C, scientists from the CRESST-II research project use the so-called phonon-light technique to detect dark matter. They are the first to use a detection probe that operates with such a low trigger threshold, which yields suitable sensitivity levels to uncover the as-yet elusive particles responsible for dark matter.


EPJ B Colloquium - Nanophononics: state of the art and perspectives

Schematic of a cavity optomechanical system

Understanding vibrations in condensed matter, and in particular how to control these vibrations, is proving essential both at a fundamental level and for the development of a broad variety of technological applications. Intelligent design of the band structure and transport properties of phonons at the nanoscale, including their interactions with electrons and photons, has improved the efficiency of nanoelectronic systems and thermoelectric materials, permitted the exploration of quantum phenomena with micro- and nanoscale resonators, and provided new tools for spectroscopy and imaging.


EPJ D Highlight - Anti-hydrogen origin revealed by collision simulation

Scientists studying the formation of antihydrogen ultimately hope to explain why there is more matter than antimatter in the universe. © vpardi / Fotolia

Numerical model takes us one step closer to understanding anti-hydrogen formation, to explain the prevalence of matter and antimatter in the universe

Antihydrogen is a particular kind of atom, made up of the antiparticle of an electron - a Positron - and the antiparticle of a Proton - an antiproton. Scientists hope that studying the formation of anti hydrogen will ultimately help explain why there is more matter than antimatter in the universe. In a new study published in EPJ D, Igor Bray and colleagues from Curtin University, Perth, Australia, demonstrate that the two different numerical calculation approaches they developed specifically to study collisions are in accordance. As such, their numerical approach could therefore be used to explain antihydrogen formation.


EPJ E Highlight - Adjustable adhesion power: what fakirs can learn from geckos

The model of adhesion between two patterned, yet elastic, surfaces

New study models adhesion force as key to contact between two rough, yet elastic, surfaces

Imagine a new type of tyres whose structure has been designed to have greater adhesion on the road. Quite a timely discussion during the long winter nights. French physicists have now developed a model to study the importance of adhesion in establishing contact between two patterned, yet elastic, surfaces. Nature is full of examples of amazing adjustable adhesion power, like the feet of geckos, covered in multiple hairs of decreasing size. Until now, most experimental and theoretical studies have only focused on the elastic deformation of surfaces, neglecting the adhesion forces between such surfaces. This new approach just published in EPJ E, by Laetitia Dies and colleagues from the Paris Sud University, France, matters when the scale of adhesive forces, is comparable to elastic forces on materials such a tyres.


EPJ Data Science Highlight - Behavioural studies from mobile crowd-sensing

Impact of exercise and socialisation on stress levels.

Smart phone monitoring has become a boon for scientists studying human behaviour and factors influencing stress

Using mobile phones for research is not new. However, interpreting the data collected from volunteers’ own smart phones--which has the potential to emulate randomised trials--can advance research into human behaviour. In a new study published in EPJ Data Science, scientists have just demonstrated the potential of using smart phones for conducting large-scale behavioural studies.The results stem from the work of Fani Tsapeli from the University of Birmingham, UK, and her colleague and Mirco Musolesi from University College London, UK. In their study, they evaluate the cause of increased stress levels of participants using user-generated data, harvested from their phones.


EPJ D Highlight - Recipe for muon pair creation, in theory

State distributions for collision between negatively charged muons and muonic hydrogen atoms.

Creation of ephemeral muonium atoms could help measure proton size

A true-muonium only lives for two microseconds. These atoms are made up one positively and one negatively charged elementary particle, also known as muons. Although they have yet to be observed experimentally, a Japanese theoretical physicist has come up with new ways of creating them, in principle, via particle collisions. The first method involves colliding a negatively charged muon and a muonium atom made up of a positive muon and an electron. The second involves colliding a positively charged muon and a muonic hydrogen atom made up of a proton and a negative muon. The author found that the second option offers the most promising advances for muonium detection. These findings have been published in EPJ D by Kazuhiro Sakimoto from the Japan Aerospace Exploration Agency in Kanagawa.


EPJ NBP Highlight - Cancer risk myth debunked

Cancer risk is not just bad luck.
© tilialucida / Fotolia

Cancer risk debate laid to rest by novel calculations distinguishing population-wide risks for each organ and individual risks linked to environmental and genetic factors

A recent study published in Science by Tomasetti and Vogelstein suggests that variations in terms of cancer risk among tissues from various organs in the body merely amount to pure bad luck. In other words, cancer risk is linked to random mutations arising in the normal course of DNA replication of healthy cells. They also claim that environmental and genetic factors play a lesser role. The scientific community has primarily reacted negatively to this interpretation and promptly refuted it with qualitative arguments and empirical evidence. Joining these voices are Didier Sornette and Maroussia Favre from ETH Zurich, Switzerland, who uncovered the statistical fallacy at the source of the Science paper’s conclusion. The key is to distinguish between individual organ risks and population risks, they wrote in recent correspondence published in EPJ Nonlinear Biomedical Physics. They also contend that the role of genetic and environmental factors must not be underplayed, even if these factors cannot explain differences in cancer rates between different organs.


EPJ H Editor Allan Franklin receives 2016 Abraham Pais Prize for History of Physics

Prof. Allan Franklin

The Abraham Pais Prize for History of Physics is given annually to recognize outstanding scholarly achievements in the history of physics. Professor Allan Franklin, who is an Editor of EPJ H and author of the Springer book The Rise and Fall of the Fifth Force, receives the 2016 Abraham Pais Prize for History of Physics for "path-breaking historical analyses of the roles of experiment in physics and for explicating the nature of evidence and error in scientific argument".


Managing Editors
Agnès Henri (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Sabine,
On this occasion, may I also thank you for your support: collaboration with you is always very pleasant and effective. Have a nice day, yours, Yurij

Yurij Holovatch, National Academy of Sciences, Lviv, Ukraine
Editor EPJ Special Topics 216, 2013

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag

Conference announcements


Magnetic Island, Queensland, Australia, 22-24 July 2017