https://doi.org/10.1140/epjs/s11734-023-00972-9
Regular Article
On stability issues of the HEOM method
Institute for Complex Quantum Systems and IQST, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
b
juergen.stockburger@uni-ulm.de
Received:
19
May
2023
Accepted:
22
August
2023
Published online:
4
September
2023
The Hierarchical Equations of Motion (HEOM) method has become one of the cornerstones in the simulation of open quantum systems and their dynamics. It is commonly referred to as a non-perturbative method. Yet, there are certain instances, where the necessary truncation of the hierarchy of auxiliary density operators seems to introduce errors which are not fully controllable. We investigate the nature and causes of this type of critical error both in the case of pure decoherence, where exact results are available for comparison, and in the spin-boson system, a full system-reservoir model. We find that truncating the hierarchy to any finite size can be problematic for strong coupling to a dissipative reservoir, in particular when combined with an appreciable reservoir memory time.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.