https://doi.org/10.1140/epjs/s11734-024-01264-6
Regular Article
System identification based on sparse approximation of Koopman operator
School of Science, Xi’an Polytechnic University, 710048, Xi’an, China
Received:
17
March
2024
Accepted:
18
July
2024
Published online:
31
July
2024
A data-driven system identification method based on the Koopman operator with sparse optimization is proposed. Koopman theory provides insights into transforming nonlinear systems into a higher-dimensional measurement function space dominated by a linear Koopman operator, which enhances system identification. The effective data-driven approach of the eigenfunctions of the Koopman operator is becoming a challenging topic. Compared with the state-of-the-art methods, this paper introduces a sparse basis selection algorithm to enhance the implementation of the compressed Koopman operator. The validity and accuracy of the method are demonstrated in a 2D Duffing system and a 3D chaotic Lorenz system. The method is also robust to noisy data.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.