https://doi.org/10.1140/epjs/s11734-024-01309-w
Regular Article
Directional crystallization of a two-phase region with a mixed conductive–convective heat and mass transport
Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin ave., 51, 620000, Ekaterinburg, Russian Federation
Received:
20
May
2024
Accepted:
23
August
2024
Published online:
11
September
2024
Here we consider the influence of simultaneous operation of convective and conductive heat and mass fluxes in a binary liquid on directional crystallization processes with a two-phase region. We consider two possible crystallization scenarios with constant and unsteady growth velocities and construct the corresponding analytical solutions in a parametric form. These solutions enable us to find such process characteristics as temperature, impurity concentration, solid-phase fraction, the laws of motion for the two-phase region boundaries dependent on material parameters and crystallization driving force, i.e. the specified system cooling conditions. The solutions obtained enable us to describe the material microstructure by means of two-phase region permeability and primary interdendritic spacing dependent on the solid-phase fraction of a solidified material. The theory under consideration also enables us to find the unfrozen liquid phase fraction of a two-phase material released in ice and permafrost melting processes, which defines the biophysical significance of the issue under study.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.