https://doi.org/10.1140/epjst/e2013-01905-1
Regular Article
Electric field induced avalanche breakdown and non-volatile resistive switching in the Mott Insulators AM4Q8
1 Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP. 32229, 44322 Nantes, France
2 Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Sud, Bât. 510, 91405 Orsay, France
3 ECyT, Universidad Nacional de San Martín, Irigoyen 3100, 1650 San Martín, Argentina
4 Institut des Nanosciences de Paris, Université Pierre et Marie Curie, CNRS UMR 7588, 4 place Jussieu, 75005 Paris, France
5 GREMAN, CNRS UMR 7347 Université F. Rabelais, UFR Sciences, Parc de Grandmont, 37200 Tours, France
6 Institut d'Electronique de Microélectronique et de Nanotechnologie, (IEMN), UMR CNRS 8520, Avenue Poincaré, PO Box 60069, 59652 Villeneuve d'Ascq Cedex, France
a e-mail: benoit.corraze@cnrs-imn.fr
b e-mail: rozenberg@lps.u-psud.fr
Received:
18
March
2013
Revised:
12
May
2013
Published online:
15
July
2013
The Mott insulator compounds AM4Q8 exhibit a new type of volatile and non volatile resistive switchings that are of interest for RRAM application. We found that above a threshold electric field ETH of the order of a few kV/cm these compounds undergo a volatile resistive switching based on an avalanche process. For electric field much higher than the threshold avalanche breakdown field, the resistive switching turns non volatile. Our EDXS and STEM analyses show that the non volatile resistive switching originating from the avalanche breakdown can neither be ascribed to local chemical modifications nor to a local phase change with symmetry breaking at a resolution better than a few nanometer. This is in strong contrast with non volatile resistive switching reported so far that are all based on chemical or structural changes. Conversely, our results suggest that the avalanche breakdown induce the collapse of the Mott insulating state at the local scale and the formation of a granular conductive filament formed by compressed metallic domains and expanded “superinsulating” domains.
© EDP Sciences, Springer-Verlag, 2013