https://doi.org/10.1140/epjst/e2019-900048-x
Regular Article
SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation – solar energy application
1
Department of Mathematics, School of Advanced Sciences, VIT,
Vellore
632014, India
2
Mechanical Engineering Department, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University,
Al-Khobar
31952, Saudi Arabia
a e-mail: sivaraj.kpm@gmail.com
Received:
3
March
2019
Received in final form:
13
April
2019
Published online: 6 December 2019
Present attempt reports the characteristics of nonlinear radiation and induced magnetic field on the forced convective Falkner-Skan flow of Single-Walled Carbon NanoHorn(SWCNH)/diamond-ethylene glycol (EG) and water nanofluid over a wedge, plate, and stagnation point. We consider 40:60 EG and water mixture as base fluid. Similarity transformations are utilized to transform the governing equations into ordinary differential equation and solved numerically using Runge–Kutta (RK) Fehlberg method. To check the accuracy of present model, numerical results for various Prandtl numbers have been compared with the results from the literature which divulges good agreement. Influence of active parameters like magnetic Prandtl number, magnetic parameter, radiation parameter, Biot number, Prandtl number and temperature parameter are graphically presented. Results exhibit that SWCNH nanoparticle has a higher heat transfer compared with diamond nanoparticle. Increasing the nanoparticle volume fraction with the suspensions of SWCNH and diamond nanoparticles enhances the temperature over the wedge, plate and stagnation point.
© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature, 2019