https://doi.org/10.1140/epjst/e2019-900168-0
Review
Odd-frequency superconducting pairing in one-dimensional systems
Department of Physics and Astronomy, Uppsala University,
Box 516,
S-751 20
Uppsala, Sweden
a e-mail: jorge.cayao@physics.uu.se
Received:
15
August
2019
Received in final form:
10
October
2019
Published online: 14 February 2020
Odd-frequency superconductivity represents a truly unconventional ordered state which, in contrast to conventional superconductivity, exhibits pair correlations which are odd in relative time and, hence, inherently dynamical. In this review article we provide an overview of recent advances in the study of odd-frequency superconducting correlations in one-dimensional systems. In particular, we focus on recent developments in the study of nanowires with Rashba spin-orbit coupling and metallic edges of two-dimensional topological insulators in proximity to conventional superconductors. These systems have recently elicited a great deal of interest due to their potential for realizing one-dimensional topological superconductivity whose edges can host Majorana zero modes. We also provide a detailed discussion of the intimate relationship between Majorana zero modes and odd-frequency pairing. Throughout this review, we highlight the ways in which odd-frequency pairing provides a deeper understanding of the unconventional superconducting correlations present in each of these intriguing systems and how the study and control of these states holds the potential for future applications.
© The Author(s) 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.