https://doi.org/10.1140/epjst/e2020-900249-7
Regular Article
Boundary conditions for dynamic wetting - A mathematical analysis
Department of Mathematics, Technische Universität Darmstadt,
Darmstadt, Germany
a e-mail: fricke@mma.tu-darmstadt.de
Received:
31
October
2019
Accepted:
6
July
2020
Published online: 14 September 2020
The moving contact line paradox discussed in the famous paper by Huh and Scriven has lead to an extensive scientific discussion about singularities in continuum mechanical models of dynamic wetting in the framework of the two-phase Navier–Stokes equations. Since the no-slip condition introduces a non-integrable and therefore unphysical singularity into the model, various models to relax the singularity have been proposed. Many of the relaxation mechanisms still retain a weak (integrable) singularity, while other approaches look for completely regular solutions with finite curvature and pressure at the moving contact line. In particular, the model introduced recently in [A.V. Lukyanov, T. Pryer, Langmuir 33, 8582 (2017)] aims for regular solutions through modified boundary conditions. The present work applies the mathematical tool of compatibility analysis to continuum models of dynamic wetting. The basic idea is that the boundary conditions have to be compatible at the contact line in order to allow for regular solutions. Remarkably, the method allows to compute explicit expressions for the pressure and the curvature locally at the moving contact line for regular solutions to the model of Lukyanov and Pryer. It is found that solutions may still be singular for the latter model.
© The Author(s) 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open access funding provided by Projekt DEAL.