https://doi.org/10.1140/epjst/e2020-000127-8
Review
EuPRAXIA Conceptual Design Report
1
Deutsches Elektronensynchrotron – Hamburg, 22607 Hamburg, Germany
2
INFN, Sezione di Napoli, 80126 Napoli, Italy
3
INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Rome, Italy
4
Cockcroft Institute, Warrington, WA4 4AD UK
5
University of Liverpool, Liverpool, L69 7ZE UK
6
JIHT of RAS, Moscow, 125412 Russia
7
Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
8
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001 Israel
9
ENEA – Centro Ricerche Bologna, 40129 Bologna, Italy
10
LPGP, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
11
INFN, Sezione di Milano, via Celoria, 16, 20133 Milano, Italy
12
Wigner Research Centre for Physics, H-1121 Budapest, Hungary
13
Universitá degli Studi di Sassari, Dip. di Architettura, Design e Urbanistica ad Alghero, 07041 Alghero, Italy
14
Advanced Photon Technologies, NIF & Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550 USA
15
SUPA, Department of Physics, University of Strathclyde, Glasgow, G4 0NG UK
16
LLR, CNRS, École Polytechnique, Palaiseau and Université Paris Saclay, Palaiseau Cedex, France
17
LULI, École Polytechnique, CNRS, CEA, Sorbonne Université, 91128 Palaiseau, France
18
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
19
Université de Lille, CNRS, UMR 8523 – PhLAM, Lille, France
20
University of Manchester, Manchester, M13 9PL UK
21
CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy
22
Synchrotron SOLEIL, Gif-sur-Yvette, 91192 France
23
Europportunities OÜ, Sopruse pst 9, 10615 Tallinn, Estonia
24
Forschungszentrum Jülich, 52428 Jülich, Germany
25
Helmholtz-Zentrum Dresden-Rossendorf e.V., 01328 Dresden, Germany
26
Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
27
LAL, CNRS/IN2P3 Univ. Paris Sud, Orsay, and Université Paris Saclay, Orsay, France
28
CEA, IRFU, DACM, Université Paris Saclay, F-91191 Gif-sur-Yvette, France
29
Shanghai Jiao Tong University, Shanghai, 200240 P.R. China
30
University of Rome Tor Vergata, 00133, Rome, Italy
31
INFN Sezione di Roma Tor Vergata, 00133 Rome, Italy
32
STFC Daresbury Laboratory, Sci-Tech Daresbury, Warrington, UK
33
John Adams Institute, Blackett Laboratory, Imperial College London, London, UK
34
Department of Physics & John Adams Institute, University of Oxford, Oxford, OX1 2JD UK
35
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, 12489 Berlin, Germany
36
ENEA, Centro Ricerche Frascati, 00044 Frascati, Rome, Italy
37
SPIN-CNR, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
38
GoLP/Instituto de Plasmas e Fusāo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
39
Central Laser Facility, RAL, Didcot, Oxfordshire, OX11 0QX UK
40
Amplitude Technologies, 91029 Evry, France
41
Università di Napoli “Federico II”, 80126 Napoli, Italy
42
Universität Hamburg, 22761 Hamburg, Germany
43
ENEA, Centro Ricerche Casaccia, 00124 Santa Maria di Galeria, Rome, Italy
44
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
45
INFN, Sezione di Pisa, Pisa, Italy
46
Center for Free Electron Laser Science, 22607 Hamburg, Germany
47
CERN, 1211 Geneva 23, Switzerland
48
Osaka University, Osaka Prefecture, 565-0871, Osaka, Japan
49
University of California Los Angeles, Los Angeles, CA, 90095 USA
50
Helmholtz Institute Jena, 07743 Jena, Germany
51
Institut für Optik und Quantenelektronik, 07743 Jena, Germany
52
KPSI-QST, Kyoto, 619-0215 Japan
53
Ludwig-Maximilians-Universität München, 80802 Munich, Germany
54
IAP RAS, Nizhnij Novgorod, 603950 Russia
55
ELI-Beamlines, Dolni Brezany, Czech Republic
56
LOA, ENSTA-CNRS-École Polytechnique UMR 7639, Palaiseau, F-91761 France
57
Deutsches Elektronensynchrotron – Zeuthen, 15738 Zeuthen, Germany
58
Brookhaven National Laboratory, Upton, NY, 11973 USA
59
Stony Brook University, Stony Brook, NY, 11794 USA
60
Tsinghua University, Beijing, 100084 P.R. China
61
Lund University, 221 00 Lund, Sweden
62
ARCNL, University of Amsterdam, 1098 XG, Amsterdam, Netherlands
63
Sapienza, University of Rome, 00161 Rome, Italy
64
INFN Sezione di Roma 1, Rome, Italy
65
Department of Physics, University of York, Heslington, YO10 5DD UK
66
CNR Istituto Nazionale di Ottica, I-50019 Sesto Fiorentino, Italy
67
University of Milan, 20133 Milan, Italy
68
University of Pécs, Institute of Physics, H-7624 Pécs, Hungary
69
School of Mathematics and Physics, The Queen’s University of Belfast, BT71NN Belfast, UK
70
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
71
Diamond Light Source, OX11 0DE Didcot, UK
72
Thales Laser S.A., 91400 Orsay, France
73
RIKEN SPring-8 Center, Hyogo, 679-5148 Japan
74
Hebrew University of Jerusalem, Jerusalem, Israel
a e-mail: ralph.assmann@desy.de
Received:
17
December
2019
Accepted:
21
July
2020
Published online:
23
December
2020
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8—10 years.
© The Author(s) 2020, korrigierte Publikation (2021)
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open access funding enabled and organized by Projekt DEAL.