https://doi.org/10.1140/epjs/s11734-021-00080-6
Regular Article
GW170817 event rules out general relativity in favor of vector gravity
1
Department of Physics and Astronomy, Texas A&M University, 77843, College Station, TX, USA
2
American Association of Physics Teachers, One Physics Ellipse, 20740, College Park, MD, USA
Received:
15
May
2020
Accepted:
5
January
2021
Published online:
16
April
2021
The observation of gravitational waves by the three LIGO-Virgo interferometers allows the examination of the polarization of gravitational waves. Here, we analyze the binary neutron star event GW170817, whose source location and distance are determined precisely by concurrent electromagnetic observations. We apply a signal accumulation procedure to the LIGO-Virgo strain data and find that the measured LIGO-Livingston signal is substantially reduced in certain frequency intervals due to real-time noise subtraction. We obtain ratios of the signals detected by the three interferometers excluding these “depleted” regions from the data analysis. We find that the signal ratios are inconsistent with the tensor polarization predictions of general relativity and Einstein’s theory is ruled out at 99% confidence level. Moreover, we find that the signal ratios and distance to the source are consistent with the vector theory of gravity (Phys Scr 92:125001, 2017) and that vector GW polarization is favored over tensor polarization and scalar polarization with exponentially large Bayes factors. If, however, we erroneously include in the data analysis the frequency regions in which the Livingston signal is depleted by noise filtering, we reproduce the result of the LIGO-Virgo collaboration favoring tensor GW polarization over vector polarization with an exponentially large Bayes factor.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.