https://doi.org/10.1140/epjs/s11734-021-00106-z
Regular Article
High-order harmonic generation in hexagonal nanoribbons
Institute of Physics, University of Rostock, 18051, Rostock, Germany
a
hannah.juerss@uni-rostock.de
Received:
8
January
2021
Accepted:
30
March
2021
Published online:
21
April
2021
The generation of high-order harmonics in finite, hexagonal nanoribbons is simulated. Ribbons with armchair and zig-zag edges are investigated by using a tight-binding approach with only nearest-neighbor hopping. By turning an alternating on-site potential off or on, the system describes for example graphene or hexagonal boron nitride, respectively. The incoming laser pulse is linearly polarized along with the ribbons. The emitted light has a polarization component parallel to the polarization of the incoming field. The presence or absence of a polarization component perpendicular to the polarization of the incoming field can be explained by the symmetry of the ribbons. Characteristic features in the harmonic spectra for the finite ribbons are analyzed with the help of the band structure for the corresponding periodic systems.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.