https://doi.org/10.1140/epjs/s11734-021-00297-5
Review
Neutrino interaction measurements with the MicroBooNE and ArgoNeuT liquid argon time projection chambers
1
University of Oxford, OX1 3RH, Oxford, UK
2
Fermi National Accelerator Laboratory (FNAL), 60510, Batavia, IL, USA
3
University of Minnesota, 55455, Minneapolis, MN, USA
4
Syracuse University, 13244, Syracuse, NY, USA
a
kirsty.duffy@physics.ox.ac.uk
Received:
18
June
2021
Accepted:
23
September
2021
Published online:
11
January
2022
Precise modeling of neutrino interactions on argon is crucial for the success of future experiments such as the Deep Underground Neutrino Experiment (DUNE) and the Short-Baseline Neutrino (SBN) program, which will use liquid argon time projection chamber (LArTPC) technology. Argon is a large nucleus, and nuclear effects—both on the initial and final-state particles in the interaction—are expected to be large in neutrino–argon interactions. Therefore, measurements of neutrino scattering cross sections on argon will be of particular importance to future DUNE and SBN oscillation measurements. This article presents a review of neutrino–argon interaction measurements from the MicroBooNE and ArgoNeuT collaborations, using two LArTPC detectors that have collected data in the NuMI and Booster Neutrino Beams at Fermilab. Measurements are presented of charged-current muon neutrino scattering in the inclusive channel, the ‘0’ channel (in which no pions but some number of protons may be produced), and single pion production (including production of both charged and neutral pions). Measurements of electron neutrino scattering are presented in the form of
inclusive scattering cross sections.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.