https://doi.org/10.1140/epjs/s11734-021-00351-2
Regular Article
An effective equation for quasi-one-dimensional funnel-shaped Bose–Einstein condensates with embedded vorticity
1
Instituto de Física, Universidade Federal de Goiás, 74.690-970, Goiânia, Goiás, Brazil
2
Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel
3
Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
Received:
10
July
2021
Accepted:
19
November
2021
Published online:
7
December
2021
On the basis of a recently introduced model for the Bose–Einstein condensate (BEC) trapped in the 2D “funnel” potential, , we develop analysis for vortex modes, which are confined in the transverse direction by the self-attraction, or by the trapping potential, in the case of self-repulsion. Linear 3D wave functions are found exactly for eigenstates with an orbital momentum. In the case of self-repulsion, 3D wave functions are obtained by means of the Thomas–Fermi approximation. Then, with the help of the variational method, the underlying Gross–Pitaevskii equation is reduced to a 1D nonpolynomial Schrödinger equation (NPSE) for modes with zero or nonzero embedded vorticity, which are tightly confined by the funnel potential in the transverse plane. Numerical results demonstrate high accuracy of the NPSE reduction for both signs of the nonlinearity. The analysis is performed for stationary modes and for traveling ones colliding with a potential barrier. By means of simulations of NPSE with the self-attraction, collisions between solitons are studied too, demonstrating elastic and inelastic outcomes, depending on the impact velocity and underlying vorticity. A boundary of the stability of 3D vortices with winding number
against spontaneous splitting in two fragments is identified in the case of the self-attraction, all vortices with
being unstable.
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021