https://doi.org/10.1140/epjs/s11734-023-01060-8
Regular Article
Interhemispheric asymmetry of the EEG rhythms coupling accompanies cognitive awakening during bimanual performance of a psychomotor test
Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
Received:
28
August
2023
Accepted:
21
November
2023
Published online:
15
December
2023
Awakening is a transitional process from sleep to wakefulness. There is a certain restructuring in the work of brain structures during this period, which further allows a person to perform conscious activity. The study of interhemispheric asymmetry of amplitude–amplitude couplings of EEG rhythms was carried out. A psychomotor test was used in experiments. This test allows us to observe the moments of falling asleep and waking up when performing monotonous work. Multichannel EEG was recorded simultaneously with the test. The data of 14 subjects who reached the second stage of sleep during the experiment were analyzed. The selected 20 s EEG segments prior to awakening were processed using a continuous wavelet transform based on the “mother” complex Morlet wavelet. The Kendall correlation coefficient was used to evaluate the measure of EEG rhythms coupling. Quantitative changes in the couplings of EEG rhythms were revealed as the moment of awakening approached: in the two most distant time intervals, the total number of asymmetric connections was five to three, and in the two closest segments, there was only one coupling of EEG rhythms. This is not just a decrease in the number of connections, but also a change of EEG rhythms coupling throughout the entire 20-s segment. The dynamic nature of the EEG rhythms coupling in the hemispheres before awakening to resume the task is shown, which may indicate the dynamic relationship of structural and functional associations of the brain.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.