https://doi.org/10.1140/epjs/s11734-024-01266-4
Regular Article
Nonlinear dynamics of dissipative oscillatory Jeffrey fluid flow via tapered wavy walls: exploration of irreversibility and entropy generation analysis
Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, 603203, Kattankulathur, Tamil Nadu, India
Received:
15
April
2024
Accepted:
18
July
2024
Published online:
29
July
2024
The primary objective of the present study is to explore the novelty in the analysis of entropy generation introduced in the oscillatory flow of Jeffrey fluid through an asymmetric tapered wavy channel subjected to Lorentz force and thermal radiation. It has diverse applications in a range of disciplines: automotive elastomers in the material selection process, soft tissue mechanics modeling in biomechanics, extrusion and injection molding optimization in polymer processing, rheological test design and data interpretation in rheology. The unique nature of the tapered wavy shape in the channel and its influence on the velocity profile of MHD oscillatory Jeffrey fluid flow represents a novel element that has not been extensively explored previously. The governing equations are transformed into a system of nonlinear differential equations using non-similarity transformations. The transient system of dimensionless partial differential equations (PDEs) is solved using an implicit finite difference numerical scheme called the Crank-Nicolson method. Incorporating relevant parameters, the exact behavior of the flow with respect to velocity, temperature and volumetric rate of entropy generation is graphically depicted. The increase in entropy generation with a higher Brinkman number implies that the enhanced influence of the porous structure leads to greater irreversibility in the Jeffrey fluid flow. A comparative study is carried out to characterize Newtonian and Jeffrey fluid behavior by analyzing the velocity and temperature profiles. Finally, the findings of the current study have been compared to those of earlier studies. The comparison is seen to bear a good agreement with the existing literature.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.