https://doi.org/10.1140/epjs/s11734-024-01299-9
Regular Article
Bragg resonance due to an undulated elastic bottom in the presence of current
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, 632014, Vellore, Tamil Nadu, India
b
sanjaykumar.mohanty@vit.ac.in
Received:
1
April
2024
Accepted:
7
August
2024
Published online:
21
August
2024
This paper explores Bragg scattering in a homogeneous fluid, focusing on the interaction between oblique waves and an undulated elastic bottom in the presence of a uniform current. It uses linear wave theory to analyze the effects of a uniform current and flexible floor on wave interaction, where the fluid propagates in two modes: free-surface and flexural mode. The study uses analytical derivation and numerical exploration of Bragg resonance conditions for various physical parameters, including perturbation and Fourier transform methods. The study computes Bragg transmission and reflection for various physical parameters and verifies the energy relations, assuring the accuracy of the results. The findings reveal that when waves propagate due to the free-surface mode, reflection coefficients decrease with increasing current speed. When waves propagate through the flexural mode, the reflection coefficients decrease as the flexural rigidity increases, while the transmission coefficients increase as the current speed increases.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.