2017 Impact factor 1.947
Special Topics

EPJ H Editor Allan Franklin receives 2016 Abraham Pais Prize for History of Physics

Prof. Allan Franklin

The Abraham Pais Prize for History of Physics is given annually to recognize outstanding scholarly achievements in the history of physics. Professor Allan Franklin, who is an Editor of EPJ H and author of the Springer book The Rise and Fall of the Fifth Force, receives the 2016 Abraham Pais Prize for History of Physics for "path-breaking historical analyses of the roles of experiment in physics and for explicating the nature of evidence and error in scientific argument".


EPJ H Highlight - May the 5th force be with you

Ephraim Fischbach, Purdue University Physics Professor
© Purdue University

Ephraim Fischbach revisits the wealth of research emerging from the quest for the fifth force, which he hypothesised in the 1980s as being a new fundamental force in nature

Discovering possible new forces in nature is no mean task. The discovery of gravity linked to Newton’s arguably apocryphal apple experiment has remained anchored in popular culture. In January 1986, Ephraim Fischbach, Physics Professor from Purdue University in West Lafayette, Indiana, had his own chance to leave his mark on collective memory. His work made the front page of the New York Times after he and his co-authors published a study uncovering the tantalising possibility of the existence of a fifth force in the universe. In an article published in EPJ H, Fischbach gives a personal account of how the existence of the gravity-style fifth force has stimulated an unprecedented amount of research in gravitational physics - even though its existence, as initially formulated, has not been confirmed by experiment.


EPJ H Highlight - Penrose’s and Hawking’s early math award


Find out how Roger Penrose and Stephen Hawking won recognition for their work on space time singularities back in the sixties, suggesting an initial start to the universe

In 1966, it was Roger Penrose who won the prestigious Adams prize for his essay: An Analysis of the Structure of Space Time. The Adams prize—named after the British mathematician John Couch Adams—is awarded each year by the Faculty of Mathematics at the University of Cambridge to a young, UK-based mathematician. At the same time, Stephen Hawking won an auxiliary to the Adams prize for an essay entitled Singularities and the Geometry of Spacetime, shortly after completing his PhD. A copy of the original submission has now been reproduced in EPJ H.


EPJ H Highlight - All paths lead to Rome, even the path to condensed matter theory

Carlo Di Castro. © 2004 Humboldt Prize

Italian physicist Carlo Di Castro shares his thoughts on the development of theoretical condensed matter physics in Rome from the 1960s until the beginning of this century.

Italian physicist Carlo Di Castro, professor emeritus at the University of Rome Sapienza, Italy, shares his recollections of how theoretical condensed matter physics developed in Rome, starting in the 1960s. Luisa Bonolis, a researcher at the Max Planck Institute for the History of Science in Berlin, Germany invited Di Castro to reflect upon his research career, which he did in an interview published in EPJ H.

In this unique document, Di Castro talks about his upbringing during the second World War. He also explains how this childhood experience later influenced his philosophy, which he aptly summarises as follows: “the fear of the unknown must be overcome through knowledge and reason.” Ultimately, this approach guided the career choices that led him to become a condensed matter physicist.


EPJ H Highlight - Einstein’s forgotten model of the universe

An image of the blackboard used in Einstein’s 2nd Rhodes lecture at Oxford in April 1931. © Museum of the History of Science, University of Oxford, UK

New insights into Einstein’s view of the cosmos from the translation and study of one of his least known papers

A paper published in EPJ H provides the first English translation and an analysis of one of Albert Einstein’s little-known papers, “On the cosmological problem of the general theory of relativity”. Published in 1931, it features a forgotten model of the universe, while refuting Einstein’s own earlier static model of 1917. In this paper, Einstein introduces a cosmic model in which the universe undergoes an expansion followed by a contraction. This interpretation contrasts with the monotonically expanding universe of the widely known Einstein-de Sitter model of 1932.


EPJ H Highlight - Einstein’s conversion from a static to an expanding universe

Einstein and Lemaître photographed around 1933. © Archives Lemaître, Université Catholique, Louvain

Albert Einstein accepted the modern cosmological view that the universe is expanding, only long after several of his contemporaries had demonstrated it with astrophysical observations

Until 1931, physicist Albert Einstein believed that the universe was static. An urban legend attributes this change of perspective to when American astronomer Edwin Hubble showed Einstein his observations of redshift in the light emitted by far away nebulae—today known as galaxies. But the reality is more complex. The change in Einstein’s viewpoint, in fact, resulted from a tortuous thought process. Now, in an article published in EPJ H, Harry Nussbaumer from the Institute of Astronomy at ETH Zurich, Switzerland, explains how Einstein changed his mind following many encounters with some of the most influential astrophysicists of his generation.


EPJ H now has a second Managing Editor

EPJ H now has a second Managing Editor

Earlier this year Francesco Guerra, who had been a member of the editorial board of EPJ H - Historical Perspectives on Contemporary Physics since its launch in 2010, joined Wolf Beiglböck in managing the journal.

Prof. Francesco Guerra, a graduate from the University of Naples, is full professor of theoretical physics at the University of Rome 'La Sapienza'. He has served on many national academic evaluation committees and is currently a member of the Physics Panel of the National Agency for the Evaluation of Universities and Research.

His scientific interests include quantum field theory and elementary particles, stochastic methods in quantum mechanics, stochastic variational principles, statistical mechanics of spin glasses and complex systems, and the history of modern physics (in particular nuclear physics). In 2008, he was the recipient of the Italian Physical Society’s Prize for History of Physics.

EPJ H Highlight - More than one brain behind E=mc2

Friedrich Hasenöhrl found proportionality between energy and its mass in a cavity filled with radiation. Source: Österreichische Zentralbibliothek fuer Physik

A new study reveals the contribution of a little known Austrian physicist, Friedrich Hasenöhrl, to uncovering a precursor to Einstein famous equation

An American physicist outlines the role played by Austrian physicist Friedrich Hasenöhrl in establishing the proportionality between the energy (E) of a quantity of matter with its mass (m) in a cavity filled with radiation. In a paper just published in EPJ H, Stephen Boughn from Haverford College in Pensylvannia argues how Hasenöhrl’s work, for which he now receives little credit, may have contributed to the famous equation E=mc2.


EPJ H - Cosmic Rays: a (partly) untold story

EPJ A – Validating Aspects of the Strong-Coupling Regime of QCD
Domenico Pacini in May 1910 (32 years old) while making a measurement. (Courtesy of the Pacini family.)

The work behind the discovery of cosmic rays, a milestone in science, involved many scientists in Europe and the New World fascinated by the puzzling penetrating radiation, and took place during a period characterized by lack of communication and by nationalism caused primarily by World War I. It took eventually from the turn of the century until 1926 before the extraterrestrial nature of the penetrating radiation was generally accepted.


EPJ H - Foundations of Quantum Statistical Physics Revisited

There is a divide, in quantum statistical physics, between the "ensemblists" who regard thermal equilibrium as a property of an ensemble (or a mixed state) and the "individualists" who regard thermal equilibrium as a property of an individual system (in a pure state). A long forgotten concept of equilibrium put forward by John von Neumann in 1929 is reanalyzed and shown to be influenced by both approaches, yet to be mainly based on the individualist view - a view that has gained ground recently.

Managing Editors
Anne Ruimy (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Isabelle,
Many thanks for the hard work indeed! The entire volume and the cover look really very good, thanks again.

George Kampis, Collegium Budapest, Hungary
Editor EPJ Special Topics 222/6, 2013

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag