2021 Impact factor 2.891
Special Topics

News / Highlights / Colloquium

EPJ ST: Franck Lépine new Editor on board

The publishers of The European Physical Journal Special Topics are pleased to announce the appointment of Dr. Franck Lépine as new Editor in the board.

Franck Lépine is a CNRS research director at ILM (France) where he leads, since 2013, a pluridisciplinary group working on the "structure and dynamics of molecules". His current field of interest is attosecond science.

After a PhD in physics concerning "imaging atomic wavefunction and understanding the concept of temperature in small atomic clusters", Franck Lépine joined the FOM-AMOLF institute where he worked on ultrafast dynamics and the emerging field of attosecond physics. In 2005 He joined CNRS in Lyon and developed a research program on photoionization and ultrafast attosecond dynamics in complex molecules. He was involved in the development of the ELI-ALPS institute (Hungary), where he led the "strong field and attosecond physics" department.

Since 2016, he is the director of the French Network for ultrafast science (GDR UP) that brings together the French community interested in ultrafast phenomena. He co-authored more than 100 peer-reviewed articles, including several review articles in the field of attosecond science.

EPJ ST Highlight - How can x-ray diffraction be used for a reliable study of nanostructured materials?

X-ray diffraction in a nanostructured material.

A new overview shows how x-ray diffraction can effectively measure lattice defects responsible for the unique properties of nanostructured materials – but special care is required for the application

Owing to their unique physical properties, nanostructured materials are now at the forefront of materials science. Several different techniques can be used to characterise their microscopic features, but each of these has its pros and cons. In new research published in EPJ ST, Jenő Gubicza at ELTE Eötvös Loránd University, Budapest, shows that one indirect method, named x-ray diffraction line profile analysis (XLPA) is suitable for analysing nanostructured materials, but its application and interpretation require special care for obtaining reliable conclusions.

Read more...

EPJ ST Highlight - Energy harvesting to power the Internet of Things

The design of the energy harvester, showing a vibrating magnetic array facing a planar coil.

A new paper in EPJ Special Topics shows how energy can be harvested from vibrating micromagnets to power the now ubiquitous wireless sensors in the most efficient way.

The wireless interconnection of everyday objects known as the Internet of Things depends on wireless sensor networks that need a low but constant supply of electrical energy. This can be provided by electromagnetic energy harvesters that generate electricity directly from the environment. Lise-Marie Lacroix from the Université de Toulouse, France, with colleagues from Toulouse, Grenoble and Atlanta, Georgia, USA, has used a mathematical technique, finite element simulation, to optimise the design of one such energy harvester so that it generates electricity as efficiently as possible. This work has now been published in EPJ ST.

Read more...

EPJ ST: Denis Machon new Editor on board

The publishers of The European Physical Journal Special Topics are pleased to announce the appointment of Dr. Denis Machon as new Editor in the board.

Denis Machon completed his PhD at the age of 26 from Grenoble INP and his postdoctoral studies from University College of London. During these years, he worked on pressure-induced amorphization and polyamorphism, both on the experimental and theoretical aspects. As a professor assistant at University Lyon 1, his research interests were centered on high-pressure physics, thermodynamics and phase transitions. His main research activities were devoted to understanding of the combined effects of pressure, size and interface in the phase stability. In 2017, he joined as associated professor the “Laboratoire Nanotechnologies et Nanosystèmes” (LN2), a joint International Research Laboratory co-operated in Canada by “Université de Sherbrooke” and in France by CNRS. At LN2, he works on mesoporous silicon and germanium as anode materials for Li-ion batteries.

He co-authored more than 90 papers and book chapters.

EPJ ST Highlight - Using AI to expand the quality and fairness of urban data

Filling in gaps in real city data.

The sparse and inconsistent availability of urban data is currently hampering efforts to manage our cities fairly and effectively – but this could be solved by exploiting the latest advances in artificial intelligence.

Our cities are remarkably complex systems. Every day, they host countless numbers of interconnected exchanges between people and processes, generating vast amounts of data in turn. Researchers have begun to explore how this information could be used to improve urban environments – but due to limitations in its quality, these efforts continue to face significant challenges. Through detailed analysis published in EPJ ST, Bill Howe and colleagues at the University of Washington, USA, propose how artificial intelligence (AI) could be used to expand the coverage, access, and fairness of data collected in cities.

Read more...

EPJ ST Highlight - An overview of neutrinos and their interactions

A new summary of the study of neutrinos, and the ways in which they interact with regular matter, could inspire both new and senior neutrino researchers to open up new areas of investigation within the field.

The history of our understanding of neutrinos, from their astrophysical origins to their elusive interactions with matter, is full of surprises. Although we know that they are the second most abundant particles in the universe after photons, they are also the least well understood. In this special issue of EPJ ST, M. Sajjad Athar and S.K. Singh at Aligarh Muslim University present a short overview of the study of neutrinos, and the ways in which they interact with other forms of matter at mid-to-high energies.

Read more...

EPJ ST Highlight - A new era of research into laser-matter interactions

A new collection of papers provides new experimental and theoretical perspectives on the interaction between matter and intense laser beams

Studies of laser-matter interactions are an important and rapidly growing area of physics. This special issue of EPJ ST, edited by Sivarama Krishnan at the Indian Institute of Technology Madras and Marcel Mudrich at Aarhus University, Denmark, contains a set of 21 articles in this field, encompassing a broad range of experimental and theoretical approaches. The collection provides researchers with useful insights into this burgeoning area of science, and the exciting applications it may soon lead to.

Read more...

EPJ ST: Baohua Ji new Editor on board

The publishers of The European Physical Journal Special Topics are pleased to announce the appointment of Dr. Baohua Ji as new Editor in the board.

Dr. Baohua Ji is currently professor of biomechanics of Zhejiang University. He earned his B.S and Ph.D degrees from Xi’an Jiaotong University of China in 1993 and 1998, respectively. He did his postdoc research at Institute of Mechanics of Chinese Academy of Science during 1998-2001, and at Max-Planck Institute for Metal Research during 2001-2004. His research is currently focused on cell-matrix interaction, collective cell behaviors, and mechanomedicine (mechanobiology based medicine). The objective of the research is to achieve a quantitative understanding of how forces and deformation affect human health and disease from molecular, cellular and tissue levels. Dr. Ji has published over 120 peer-reviewed Journal papers. And he has received several awards including the Outstanding Young Scientist Award of the Chinese Society of Theoretical and Applied Mechanics (2009), the NSFC Outstanding Young Scientists Award (2010) and National 10-Thousand program for leading talents (2017).

EPJ ST Highlight - Examining recent developments in Quantum Chromodynamics

The strong nuclear force is responsible for binding together quarks, the basic building blocks of protons and neutrons, that comprise almost all of the visible matter. A new collection looks at recent development in the field of Quantum Chromodynamics (QCD) from a range of perspectives.

Created as an analogy for Quantum Electrodynamics (QED) — which describes the interactions due to the electromagnetic force carried by photons — Quantum Chromodynamics (QCD) is the theory of physics that explains the interactions mediated by the strong force — one of the four fundamental forces of nature.

A new collection of papers published in EPJ Special Topics, and edited by Diogo Boito, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Brazil, and Irinel Caprini, Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania, brings together recent developments in the investigation of QCD.

Read more...

EPJ ST Highlight - An exploration of tipping in complex systems

This special issue examines the extensive landscape of research into tipping within complex systems, and provides guidance as to where the field will likely be headed in the future.

Complex systems can be found in a diverse array of real-world scenarios, but are unified by their ability to suddenly transition between drastically different patterns of behaviour. Known as ‘tipping,’ this type of transformation is generally triggered by small changes in the parameters of individual systems – whose effects can rapidly cascade to alter entire networks of interacting subsystems. This special issue of EPJ Special Topics explores the nature of tipping in complex systems through 21 new articles. Together, the studies reveal recent trends and directions of research within the field, and highlight the pressing challenges it will face in the future.

Read more...

Managing Editors
Anne Ruimy and Vijala Kiruvanayagam (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Sabine, Sandrine, and Nicolas, your professional and efficient management supported our editing tasks enormously and made the whole process smooth and pleasant. The web-based SAGA system was very helpful for handling the workflow. Thank you all for your high commitment!

Jan Freund, ICBM, University of Oldenburg, Germany

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag