2024 Impact factor 2.3
Special Topics

EPJ A Highlight - Automated symmetry adaption in nuclear many-body theory

alt
Symmetry reduction process of a prototypical many-body expression leading to an equivalent symmetry-reduced form. Recoupling coefficients arising from the AMC program are shown in red.

The extreme cost of solving the A-nucleon Schrödinger equation can be minimized by leveraging rotational symmetry and, thus, enable the computation of observables in heavy nuclei and/or with high precision.

The associated reduction process, which amounts to re-expressing the working equations in terms of rotationally-invariant objects, requires lengthy symbolic manipulations of elaborate algebraic identities.

For the first time, this involved process is automated by a powerful graph-theory-based tool, the AMC code, which condenses months of error-prone derivations into a simple computational task performed within seconds.

The AMC program tightens the gap for a full automation of the many-body workflow, thereby lowering the time required to build and test novel quantum many-body formalisms.

Managing Editors
Sandrine Karpe and Vijala Kiruvanayagam (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Sabine,
For me it was a great pleasure to work with you, Christian and Isabelle. All questions have been resolved very fast. And amiability and competence of Isabelle are inestimable. Best regards,

Natasha Kirova, CNRS & University Paris Sud, Orsay, France
Editor EPJ Special Topics 222/5, 2013

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag