2024 Impact factor 2.3
Special Topics

EPJB Colloquium - How to understand real-world complexity through multiplex networks

An illustrative example of the multiplex network of nine nodes with two layers, the red solid) and the blue (dashed) layer.

Many real-world complex systems (from living organisms to human societies to transportation system) are best modeled by multiplex networks of interacting network layers. The study of multiplex network is one of the newest and hottest themes in the statistical physics of complex networks. Compared to single networks the current level of our understanding of multiplex networks is far from satisfactory. Pioneering studies have proven that the multiplexity has broad impact on the system's structure and function. Novel phenomena, unforeseen in traditional single-layer framework, can arise as a consequence of the coupling of network layers. In this EPJ B Colloquium Kyu-Min Lee, Byungjoon Min, and Kwang-Il Goh organize and review of the growing body of literature on statistical physics of multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. They discuss the recent major developments and point out some outstanding open challenges and research questions that warrant serious investigation, such as the identification of the minimal couplings (in the renormalization group sense) relevant to the characteristic discontinuous transitions in multiplex systems.

Managing Editors
Sandrine Karpe and Vijala Kiruvanayagam (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Sabine, Sandrine, and Nicolas, your professional and efficient management supported our editing tasks enormously and made the whole process smooth and pleasant. The web-based SAGA system was very helpful for handling the workflow. Thank you all for your high commitment!

Jan Freund, ICBM, University of Oldenburg, Germany

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag