2018 Impact factor 1.660
Special Topics

EPJ D - Electrons go unperturbed in a matter-wave interferometer

Photodetachment microscopy provides the best electron affinity measurements on atoms and molecules. Photodetachment of a negative ion produces a nearly free electron, hardly perturbed by the residual atomic core. Applying an external electric field does not only concentrate the photoelectron current in a round spot, but also gives rise to an electron interference pattern, due to the existence of a pair of possible trajectories bound to every point of the spot. This very fundamental matter-wave interferometer produces extraordinarily robust interferograms. Although magnetic fields, even in the sub-microT range, causes fluxes between the interfering trajectories that can be huge compared to the quantum unit of magnetic flux, a magnetic perturbation of the system appears to only produce a global deviation of the spot, without any modification of the interference pattern. The main result of the recent paper published in EPJ D by Chaibi et al. is that even in higher magnetic fields (typically 100 microT) the electron interference phase, or number of interference rings, remain unperturbed. This comfirms photodetachment as a highly accurate method for electron spectrometry and electron affinity measurements.

To read the full paper ‘Effect of a magnetic field in photodetachment microscopy’ by W. Chaibi et al., Eur. Phys. J. D (2010) click here

Managing Editors
Anne Ruimy (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Thank you very much, Isabelle! Very timely. And the cover looks fantastic! We are grateful for the great collaboration! Best wishes.

Dirk Helbing, ETH Zurich, Switzerland
Editor EPJ Special Topics 214, 2012

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag