2024 Impact factor 2.3
Special Topics

News

EPJ E Highlight - Tumble-proof cargo transporter in biological cells

alt
The average number density field of particles in the vicinity of the motor

New model shows how collective transport by synthetic nanomotors along biopolymer filaments can be effectively directed

Ever wondered how a molecular nanomotor works when repairing DNA or transporting material such as organelles in the cell? Typically, nanomotors move along biopolymer filaments to go about their duties in the cell. To do so, they use the energy of chemical reactions derived from their surroundings to propel themselves. In a new study published in EPJ E, Mu-Jie Huang and Raymond Kapral from the University of Toronto in Ontario, Canada show that small synthetic motors can attach to polymeric filaments and - unlike what previous studies showed - move along without changing either their shape or the direction in which they set out to move. This makes it possible to effectively deliver the substances they transport, such as anti-cancer drugs or anti-pollutants.

Read more...

EPJ Plus Highlight - Back to basics with thermoelectric power

Determination of the Seebeck coefficient for a circuit composed of two dissimilar materials.

New study highlights the role of electron diffusivity when turning waste heat into electricity

Many phenomena in physics, though well-known, are not necessarily widely understood. That’s the case with thermoelectricity, which harnesses waste heat by coupling heat flux and electric current. However, understanding such phenomena is important in order to leave the door open for discovering novel manifestations of them. Thus, even today physicists working in the area of thermoelectricity continue to ask fundamental questions about the underlying physical process. For example, in a recent study, a team based in France questioned the nature of the force that puts electrons to work when a temperature difference is applied across a thermoelectric material. Now, Henni Ouerdane, affiliated to the Russian Quantum Center near Moscow, and colleagues have published in EPJ Plus a study showing that the force that puts electrons to work to harness the waste heat is linked to the ability of electrons to diffuse through the material. Potential applications in the field of electrical power production from waste heat include thermoelectric devices designed to boost power over a range spanning ten orders of magnitude: typically from microwatts to several kilowatts.

Read more...

EPJ Quantum Technology Review - Macroscopic Quantum Resonators (MAQRO): 2015 update

alt

Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schrödinger’s cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow researchers to address such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored ‘quantum-classical’ transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology.

In this review article, the authors present the MAQRO proposal submitted in response to the ESA's 4th Cosmic Vision call for a medium-sized mission (M4) with a possible launch in 2025, and review the progress with respect to the original MAQRO proposal made in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfil the stringent environmental requirements for macroscopic quantum experiments.

Read more...

EPJ E News: Pawel Pieranski honored with the Prix Félix Robin 2015

We congratulate Professor Pawel Pieranski of the Laboratoire de Physique des Solides, Université Paris-Sud, who has been awarded the Prix Félix Robin* 2015 by the French Physical Society.

Today, 24 April, Pieranski will receive the prize from the president of the French CNRS Alain Fuchs during the award ceremony that will take place at the Palais de la Découverte in Paris. During the event Pieranski will give a presentation entitled “La beauté universelle des cristaux liquides” that will bring into focus the peculiarities of liquid crystals and how these materials challenge our understanding of the states of matter.

Pieranski is a long standing contributor to EPJ, especially EPJ E. His EPJ papers can be found here.

*The Prix Félix Robin 2015 is one of the 6 grand awards of the Société Française de Physique and the one with the longest tradition - it was instituted in 1922.

EPJ B Highlight - Electronic counterpart to ecological models revealed

Two coupled logistic maps.

Peering into the future of populations with the help of complex networks of predictive maps

Predicting the future from the present - that’s what logistic maps can do. For example, they can be used to predict the evolution of a population in the near future based on its present situation. They are relevant when studing systems such as entire populations, where the behaviour of the separate units - which have the ability to self-organise - cannot explain the behaviour of the system as a whole. Alexandre L'Her from the University of the Republic, Montevideo, Uruguay, and colleagues have now developed an electronic version of a logistic map that is capable of interacting with many other maps, making the model scalable. As a benchmark to explain new emerging behaviours of entire complex systems, they have studied networks of logistic maps coupled together at various levels. Their findings were recently published in EPJ B and make it possible to more easily compare previous computer simulations with experimental results obtained using this state-of-the art electronic model.

Read more...

EPJ H Highlight - Timeless thoughts on the definition of time

alt
The solar year was often determined as the interval between consecutive spring equinoxes when the sun is directly over the equator.

On the evolution of how we have defined time, time interval and frequency since antiquity

The earliest definitions of time and time-interval quantities were based on observed astronomical phenomena, such as apparent solar or lunar time, and as such, time as measured by clocks, and frequency, as measured by devices were derived quantities. In contrast, time is now based on the properties of atoms, making time and time intervals themselves derived quantities. Today’s definition of time uses a combination of atomic and astronomical time. However, their connection could be modified in the future to reconcile the divergence between the astronomic and atomic definitions. These are some of the observations made by Judah Levine, author of a riveting paper just published in EPJ H, which provides unprecedented insights into the nature of time and its historical evolution.

Read more...

EPJ C: New Editor-in-Chief for Experimental Physics II: Astroparticle Physics

The publishers of The European Physical Journal C – Particles and Fields are pleased to announce the appointment of Professor Laura Baudis as new Editor-in-Chief. This follows the splitting of the experimental section into Experimental Physics I: Accelerator Based High-Energy Physics, now led by Jos Engelen, and Experimental Physics II: Astroparticle Physics, now led by Laura Baudis.

Laura Baudis is a Professor at the University of Zurich. Her research interests are in astroparticle physics and cosmology, in particular in the fields of direct dark matter detection and neutrino physics.

EPJ AP Review - Imaging, single atom contact and single atom manipulations at low temperature

The LT-UHV-4-STM head and a 5.12 x 5.12 nm2 STM image of a letter C constructed atom by atom with 6 Au ad-atoms on Au(111) using here scanner PS3. I = 50 pA, V = 500 mV with ΔZ = 0.12 nm. Single atom manipulations tunnel resistance: 333 KΩ.

The new ScientaOmicron LT-UHV scanning tunneling microscope is installed at Pico-Lab CEMES-CNRS (Toulouse) with its 4 STM scanners performing on the same surface. At 4.3 K, we report state-of-the-art STM experiments on Au(111) usually performed on the most stable single tip LT-UHV scanning tunneling microscopes.

Operating the 4 scanners independently or in parallel with an inter tip apex distance lower than 100 nm, the ΔZ stability is better than 2 pm per STM. Single Au atom manipulations were performed on Au(111) recording the pulling, sliding or pushing signal. When contacting one Au ad-atom, a jump to contact leads to a perfect linear low voltage I-V characteristics with no averaging. Two tips surface conductance measurements were also performed with one lock-in and in a floating sample mode to capture the Au(111) surface states via two STM tips dI/dV characteristics. This new instrument is exactly 4 times as precise as a single tip LT-UHV STM.

Read more...

EPJ E Highlight - New insights into the evaporation patterns of coffee stains

alt
Deposits of silicon dioxide nanoparticles at pH2 and pH9 on glass substrates with driven menisci experiments

New factors influencing particle deposition via solvent evaporation and relevant to microchips manufacturing have now been elucidated

Few of us pay attention to the minutiae of coffee stains’ deposition patterns. However, physicists have previously explained the increased deposition of ground coffee particles near the edge of an evaporating droplet of liquid. They attributed it to the collective dynamics of ground coffee grains as the liquid evaporates along the contact line between the liquid coffee and the table. This kind of dynamics also governs microchip production, when particles are deposited on a substrate by means of solvent evaporation. However, until recently, explanations of how such evaporation patterns are formed did not account for the effect of the mutual interactions between electrically charged particles. Now, Diego Noguera-Marín from the University of Granada, Spain, and colleagues have found that particle deposition may be controlled by the interplay between the evaporation of the solvent via convection and the previously identified collective diffusion of suspension nanoparticles. These findings appear as part of an EPJ E topical issue, entitled Wetting and Drying: Physics and Pattern Formation.

Read more...

EPJ E Highlight - How to make porous materials dry faster

alt
A glass channel with a rectangular-like cross section closed at one end and open at the entrance for evporation. The receding air-water interface is qualitatively sketched

Physicists show that the shape of the air-water interface, when linked to capillarity, influences water retention or evaporation

Water in, water out: such is the cycle of porous material. In some cases, like with soils, it is preferable to keep water in. In others, it makes better economic and ecological sense to have porous materials dry faster, e.g. in the paper industries or with plasterboard manufacturing. Modeling how porous material retains water or dries up can be resolved by narrowing the focus down to a single porous channel; now, a team of physicists has uncovered subtle underlying effects. These include the local shape of the air and water interface, which, in turn, is influenced by the actual shape of the capillaries. Emmanuel Keita, a physicist from Paris-Est University, France, who is also affiliated with Harvard University, Massachusetts, USA, and colleagues have just published these results in EPJ E.

Read more...

Managing Editors
Sandrine Karpe and Vijala Kiruvanayagam (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Sabine, Sandrine, and Nicolas, your professional and efficient management supported our editing tasks enormously and made the whole process smooth and pleasant. The web-based SAGA system was very helpful for handling the workflow. Thank you all for your high commitment!

Jan Freund, ICBM, University of Oldenburg, Germany

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag