2022 Impact factor 2.8
Special Topics

News

Quentin Glorieux joins the EPJ Scientific Advisory Committee (SAC)

Quentin Glorieux

The Scientific Advisory Committee of EPJ is delighted to welcome Professor Quentin Glorieux, as the new representative for the French Physical Society.

Quentin Glorieux is Associate Professor at Sorbonne Université, Laboratoire Kastler Brossel, and fellow member of Institut Universitaire de France (IUF). His expertise covers a broad range of topics from nanooptics to quantum gases and superfluidity. In the last years, his experimental work focus on Quantum Fluids of Light to simulate many-body physics and analogue gravity with light in various platforms (from exciton-polaritons in microcavities to non-linear propagation of light in atomic vapors.)

EPJ ST issue: Trends in Recurrence Analysis of Dynamical Systems

More than a decade has passed since the publication of the special issue “20 Years of Recurrence Plots: Perspectives for a Multi-purpose Tool of Nonlinear Data Analysis” in the European Physical Journal—Special Topics (EPJST). The hope for further developments inspired by the interesting contributions in this special issue was fully realized. We see an amazing development in the field of recurrence plots (RPs), recurrence quantification analysis (RQA), and recurrence networks. Recurrence analysis is not just one method; it has emerged as an entire framework with many extensions, special recurrence definitions, and specifically designed methods and tools. It has found spreading applications in diverse and growing scientific fields. Recurrence analysis has become a widely accepted concept, even referred to in studies that are actually not using it as a method, but rather using it as a reference or alternative tool. It continues to be an active area of research and development today. An attempt to provide an overview of the most significant technical developments of this recurrence-plot-based framework in the past decade is included in this special issue.

All articles are available here and are freely accessible until 8 May 2023. For further information read the Editorial by Norbert Marwan, Charles L. Webber & Andrzej Rysak ”Trends in recurrence analysis of dynamical systems” Eur. Phys. J. Spec. Top. 232, 1–3 (2023). https://doi.org/10.1140/epjs/s11734-023-00766-z.

EPJ Plus Highlight - Better simulations of neutron scattering

Estimating neutron scattering after a collision

A new simulation approach named eTLE aims to improve the precision of a primary tool for estimating neutron behaviours in 3D space. This study examines the approach in detail – validating its reliability in predicting the scattering of neutrons in crystalline media.

Tripoli-4® is a tool used by researchers to simulate the behaviours of interacting neutrons in 3D space. Recently, researchers developed a new ‘next-event estimator’ (NEE) for Tripoli-4®. Named eTLE, this approach aims to increase Tripoli-4®’s precision using Monte Carlo simulations: a class of algorithms which solve problems by repeatedly estimating the characteristics of a whole population of neutrons, by selecting random groups of individuals. Through new research published in EPJ Plus, a team led by Henri Hutinet at the French Alternative Energies and Atomic Energy Commission implement and validate eTLE’s reliability for the first time.

Read more...

EPJ Plus Focus Point on Tensions in Cosmology from Early to Late Universe: The Value of the Hubble Constant and the Question of Dark Energy

Guest editors: S. Capozziello, V.G. Gurzadyan

The papers included in this Focus Point collection are devoted to one of the hot topics in modern cosmology - the Hubble constant tension – claimed as a discrepancy between the descriptions of the early and late Universe. A broad range of topics are involved in the Hubble tension issue, from the sophisticated methods of observational data analysis up to dark energy models dealing with modifications of the standard cosmological model and related to the extensions of the General Relativity. The papers included in the collection are authored by known experts and groups, and reflect the diversity of approaches, both, aiming in solving the tension improving measurements and datasets and in searching for new physics capable of addressing the problem.

All articles are available here and are freely accessible until 3 May 2023. For further information, read the Editorial.

EPJ ST Highlight - Tracking how magnetism affects animal behaviour

Behavioural testing of animal magnetic sensing in the laboratory and the wild.

We still know little about how animal behaviour changes in response to magnetic fields. A new review provides a tutorial introduction to the study of this fascinating and potentially useful phenomenon.

For over 50 years, scientists have observed that the behaviour of a wide variety of animals can be influenced by the Earth’s magnetic field. However, despite decades of research, the exact nature of this ‘magnetic sense’ remains elusive. Will Schneider and Richard Holland from Bangor University in Wales and their co-worker Oliver Lindecke from the Institute for Biology, Oldenburg, Germany have now written a comprehensive overview of this cross-disciplinary field, with an emphasis on the methodology involved. This work is now published in EPJ ST.

Read more...

EPJ B Highlight - 2D Janus materials could harvest abundant hydrogen fuel

Top and side views of the Janus monolayer

A new group of asymmetric 2D materials can readily catalyse the splitting of water into hydrogen and oxygen – providing a reliable source of hydrogen fuel.

Several studies have predicted that the water splitting reaction could be catalysed by certain groups of 2D materials – each measuring just a few atoms thick. One particularly promising group are named 2D Janus materials, whose two sides each feature a different molecular composition. Through new calculations detailed in EPJ B, Junfeng Ren and colleagues at Shandong Normal University in China present a new group of four 2D Janus materials, which could be especially well suited to the task.

Read more...

EPJ B Highlight - Examining heat transfer in granular materials

Heat transfer via gas and water capillaries

Heat transfer through granular materials in a humid atmosphere occurs mainly through the air in the case of larger particles, and via water capillary bridges for smaller particles.

Granular materials contain large numbers of small, discrete particles, which collectively behave like uniform media. Their thermal conductivity is crucial to understanding their overall behaviour – but so far, researchers haven’t considered how this value is affected by the surface roughness of their constituent particles. Through new analysis published in EPJ B, Bo Persson at the Peter Grünberg Institute, part of the Jülich Research Centre in Germany, has discovered that when this roughness is considered, thermal conductivity in granular materials is heavily influenced by particle sizes. These findings could help physicists to better describe a wide array of granular materials: from sand and snow, to piles of rice, coffee beans, and fertilizer.

Read more...

EPJ Plus Highlight - Building a computer with a single atom

How small can a computer get? As small as an atom new research suggests. Credit: Robert Lea (created with Canva)

New research opens the horizons regarding what a “computer” can be and how small a computational unit can get

Considering a “computer” as anything that processes information by taking an input and producing an output leads to the obvious questions, what kind of objects could perform computations? And how small can a computer be? As transistors approach the limit of miniaturisation, these questions are more than mere curiosities, their answers could form the basis of a new computing paradigm.

In a new paper in EPJ Plus by Tulane University, New Orleans, Louisiana, researcher Gerard McCaul, and his co-authors demonstrate that even one of the more basic constituents of matter — atoms — can act as a reservoir for computing where all input-output processing is optical.

Read more...

EPJ E Highlight - Shear ultrasound shaking lowers friction between solids

Measuring responses to shear ultrasound vibrations

A simple new experiment shows how tiny ultrasound shaking at the interfaces between two objects will lower the friction between them – and in some cases, can induce sudden, large jerky motions

When high-frequency shaking occurs at an interface between two solids, recent experiments have revealed that the frictional forces between the objects can be weakened. Through a simple new experiment detailed in EPJ E, Julien Léopoldès at Université Gustave Eiffel, Marne la Vallée (formerly at ESPCI Paris) has discovered that mechanical vibrations also enhance structural aging in these systems, and can sometimes trigger sudden, jerking motions. The results could lead to a better understanding of how buildings are weakened by ambient vibrations, and may also help geologists to draw new insights into the mechanisms responsible for triggering earthquakes and landslides.

Read more...

EPJA Topical Collection: CompOSE: a repository for Neutron Star Equations of State and Transport Properties

Guest Editors: Danai Antonopoulou, Enrico Bozzo, Chikako Ishizuka, Ian Jones, Micaela Oertel, Constança Providencia, Laura Tolos and Stefan Typel

The CompOSE Topical Collection is a compendium of several works on neutron star equations of state (EoS) and transport properties related to the online repository CompOSE (CompStar Online Supernovae Equations of State).

Read more...

Managing Editors
Sandrine Karpe and Vijala Kiruvanayagam (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Isabelle,
Many thanks for the hard work indeed! The entire volume and the cover look really very good, thanks again.

George Kampis, Collegium Budapest, Hungary
Editor EPJ Special Topics 222/6, 2013

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag