2020 Impact factor 2.707
Special Topics

Structural, optical and nanomechanical properties of (111) oriented nanocrystalline ZnTe thin films

Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported. X-ray diffraction patterns reveal that the films were preferentially oriented along the (1 1 1) direction. The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap showed strong thickness dependence. The average film hardness and Young's modulus obtained from load-displacement curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of (1 1 1) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from the nanoscratch test was ~0.4.

Structural, optical and nanomechanical properties of (111) oriented nanocrystalline ZnTe thin films, M.S.R.N. Kiran, S. Kshirsagar, M.G. Krishna and S.P. Tewari (2010), Eur. Phys. J. Appl. Phys. DOI 10.1051/epjap/2010071

Managing Editors
Anne Ruimy and Vijala Kiruvanayagam (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Sabine,
On this occasion, may I also thank you for your support: collaboration with you is always very pleasant and effective. Have a nice day, yours, Yurij

Yurij Holovatch, National Academy of Sciences, Lviv, Ukraine
Editor EPJ Special Topics 216, 2013

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag