2017 Impact factor 1.947
Special Topics


EPJ E Highlight - Pore size alone does not matter when biological nanopores act as sugar chain biosensors

Setup recording how sugar chains pass through a funnel-shaped nanopore.

The effectiveness of nanopore biosensors capable of identifying sugar chains from biological molecules involved in key biological processes also depends on the nanopore's electrical charge and inner pore design

Protein nanopores are present in cell membranes and act as biological gateways. This means that they can also be used for the detection of specific bioactive molecular chains, like sugar chains, such as molecules from the glycosaminoglycan family. The latter are responsible for key interactions at the cellular level. They typically mediate interactions with cell surfaces or with proteins, resulting in the activiation of physiological and pathological effects in embryonic development, cell growth and differentiation, inflammatory response, tumour growth and microbial infection. The use of such nanopores as biosensors requires to fully understand the intricate mechanisms occurring as sugar chains pass through them. In a new study published in EPJ E, Aziz Fennouri from Paris-Saclay University in Evry, France, and colleagues outline the key criteria determining the effectiveness of two types of nanopores in the detection of sugar chains.


EPJ B Highlight - Factors affecting turbulence scaling

Stability regions calculated by a model for a given compressibility.

Study focuses on hydrodynamic effects of external disturbances on fluids at critical points, including inconsistent turbulence in all directions, or anisotropy, and varying degrees of compressibility

Fluids exhibiting scaling behaviour can be found in diverse physical phenomena occurring both in the laboratory and in real-world conditions. For instance, they occur at the critical point when a liquid becomes a vapour, at the phase transition of superfluids, and at the phase separation of binary liquids whose components exhibit two different types of behaviour.

Until now, models have not fully taken the effect of external turbulences into account. In a recent study published in EPJ B, Michal Hnatič from Šafárik University in Košice, Slovakia and colleagues investigate the influence of ambient turbulent speed fluctuations in physical systems when they reach a critical point. These fluctuations are found to be the result of a lack of spatial regularity in these systems, or anisotropy, and of the compressibility of fluids. What is unique about this study is that the turbulence introduced in the model is novel and helps to elucidate the extent to which the speed of these fluctuations affects their scaling behaviour.


Gero Thomas Medal 2018 awarded to Angela Oleandri

Angela Oleandri

The Gero Thomas Medal 2018 was awarded to Angela Oleandri for her outstanding and sustained contributions to the development of physics publications in Europe, including her support to the creation and development of the EPJ series of journals and Europhysics Letters (EPL). Angela Oleandri was for 20 years a member of the EPJ Steering Committee and the Editorial Director of the Società Italiana di Fisica from 2005 to 2016.

EPJ A Highlight - The power of resolution in charge-exchange reactions

Spectra of the 76Ge(3He,t)76As reaction unveiling an enormous number of resolved states at low excitation energies. Five color-coded spectra are stacked on top of each other showing the angular dependences. The isobaric analog state (IAS), GT resonance (GTR) and spin-dipole resonance (SDR) are indicated.

This review highlights the extraordinary power of the hadronic charge-exchange reactions at intermediate energies and at highest spectral resolution, as exemplified by the (n,p)-type (d,2He) and the (p,n)-type (3He,t) reactions. The review shows how areas of nuclear physics, astrophysics and particle physics alike benefit from such enhanced resolution. A major part of this review focuses on weak interaction processes in nuclei, especially on those, where neutrinos play a pivotal role like in solar neutrino induced reactions or in ßß decay. Unexpected and even surprising new features of nuclear structure are being unveiled as a result of high resolution. (See figure).


EPJ A has a new Editor in Chief for Theoretical Physics II

David Blaschke

From October 2018 David Blaschke succeeds Tamás S. Biró as Editor in Chief of EPJ A for the section Theoretical Physics II: Hadron Physics and Quark Matter.

David Blaschke is Professor for Theoretical Physics of the University of Wroclaw and leading scientist at the Joint Institute for Nuclear Research in Dubna. His research interest is in developing quantum field theoretical models of strongly interacting matter to describe the transition from hadronic matter to the quark gluon plasma in the QCD phase diagram. He studies applications of these models to the physics of compact stars, their mergers and to relativistic heavy-ion collisions.

EPJ Plus article on climate change and safety implications selected for Springer Nature Grand Challenges Programme

In modern times, assessing the impact of climate change on the vulnerability of radiological practices is necessary to implement risk management policies and secure facilities.

Global warming goes hand in hand with increasing instances of climate-related natural disasters such as storms, droughts, floods, and rainfalls. The effects of climate change, beyond having a tremendous impact on ecosystems, are also remarkable risk factors for anthropogenic systems (some examples include infrastructure, agriculture, and tourism).

In Europe, flooding events have increased in the last few years, particularly in the Mediterranean region, which has a high climatic risk because of its complex orography and the presence of human activities.

In the European Physical Journal Plus, G. M. Contessa et al. analyze the influence of climate change on human activities involving ionizing radiation in Italy.


EPJ E Highlight - Bacteria-inspired motility could power a new generation of mini-robots

Diagram depicting the orientational configuration of the helix in the laboratory.

Physicists develop a model to explain how deforming a helix could generate additional locomotion for some microorganisms and mini-robots

Many microorganisms rely on helices to move. For example, some bacteria rotate a helical tail, called a flagellar filament, for thrust and deform these tails during rotation. In addition, some types of bacteria, named Spirochaetes, rely on the deformation of a helical body for their motion. To better understand such locomotion mechanisms, scientists have created mathematical models of mini-robots with helical structures, referred to as swimmers. In a recent study published in EPJ E, Lyndon Koens from the University of Cambridge, UK, and colleagues, identify the factors enhancing the agility of deforming helix swimmers.


EPJ B Colloquium - A retrospective on Hardy Gross’ work


In this EPJ B Colloquium, Carlos Fiolhais offers a brief retrospective on the important scientific contributions of Hardy Gross during 25 productive years of his career, from 1976, when he published the first paper his doctoral years, until 2000, when he moved from Würzburg to Berlin. Fiolhais traces all of Gross’ publications and points out the most impressive scientific achievements, punctuating the physics with episodes from the life of Hardy Gross and other physicists in his circle, which adds extra colour to this piece.


EPJ B Highlight - Freeloaders beware: incentives to foster cooperation are just around the corner

Rewards can convince people to cooperate in society. Photo by Hanny Naibaho on Unsplash

Numerical simulations show that it is possible to coerce people to collaborate for the common good

In our society, there are always a certain percentage of people who adopt a freeloader attitude. They let other members of society do all the work and do not do their part. By not contributing their share of effort, to the detriment of the rest of society, freeloaders pose a serious social threat, and can even lead to social collapse. In a new study published in EPJ B, Chunpeng Du from Yunnan University of Finance and Economics, Kunming, China, and colleagues show that it is possible to incentivise members of society to cooperate by providing them fixed bonuses and, thus, prevent freeloader behaviour from becoming prevalent.


EPJ Plus Highlight - Statistical method recreates the history of a long-abandoned village

General view of the early medieval occupation of Zornoztegi.

History revealed by integrating multiple layers of clues from medieval village remnants

Archaeologists now have new tools for studying the development of medieval villages and the transformation of the historical landscapes surrounding them. In a study recently published in EPJ Plus, scientists have attempted to reconstruct the history of Zornoztegi, an abandoned medieval village located in the Basque Country, Spain. To do so they rely on the various analysis methods available to archaeologists, including radiocarbon dating, archaeological and historical records, archaeobotanical and optical microscope analyses of samples found on the site, together with a statistical analysis model. Paola Ricci from the University of Campania “Luigi Vanvitelli” in Italy and colleagues used this approach to establish the history of the village in the time leading up to the Middle Ages.


Managing Editors
Anne Ruimy (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Sabine, Sandrine, and Nicolas, your professional and efficient management supported our editing tasks enormously and made the whole process smooth and pleasant. The web-based SAGA system was very helpful for handling the workflow. Thank you all for your high commitment!

Jan Freund, ICBM, University of Oldenburg, Germany

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag