2020 Impact factor 2.707
Special Topics


EPJ ST Special Issue: Complex Bio Rhythms

Nature is full of nonlinearities that are responsible for a great variety of responses and, in some sense, define biodiversity characteristics. In this regard, a nonlinear dynamics perspective is of special interest for a proper understanding of natural rhythms that can represent the most striking manifestations of natural and biological system behaviors. Natural rhythms can be either periodic or irregular over time and space and each kind of dynamical behavior may be related to both normal and pathological functioning.

Nonlinear dynamics of biological systems have been investigated considering different approaches and perspectives, focused on different purposes. Accordingly, investigations can be related to the general comprehension of physiological functioning, pathologies, control and biomedical engineering applications. In this regard, it is of special importance the investigation of biological rhythms employing a nonlinear dynamics perspective.

Modeling, numerical and experimental approaches are all employed in the analysis of complex biological rhythms. We invite researchers to contribute original articles to the Special Issue Complex Bio Rhythms to show continuing efforts to understand nonlinear systems such as biological and biomedical systems, biomechanics and general natural systems. Distinct aspects as modeling, bifurcations, synchronization, control, parameter estimation and engineering applications are of interest.


EPJ ST Special Issue: Intense laser-matter interaction in atoms, finite and condensed systems

Interaction of intense laser pulses with matter on various scales is a growing area of research using table-top femtosecond and sub-femtosecond laser pulses as well as large-scale free electron lasers spanning the photon energy range from the infrared to x-rays. The Nobel prize in Physics (2018) was awarded in part to the development of “light tools” or lasers delivering intense near-infrared laser pulses. This has burgeoned research in intense laser matter interaction to develop attosecond pulses in the soft x-ray region to super-intense pulses to generate relativistic plasmas. The large scale end of this research saw a concomitant development in accelerator based photon sources of intense short wavelength light pulses VUV, soft- and hard x-rays from free-electron laser pulses. This science has grown rapidly in the last few decades and calls for a review and a collection to gather its length and breadth.


Managing Editors
Anne Ruimy and Vijala Kiruvanayagam (EDP Sciences) and Sabine Lehr (Springer-Verlag)
Dear Isabelle,
Many thanks for all the hard work. Many thanks indeed!

Peter M.A. Sloot, University of Amsterdam, The Netherlands
Editor EPJ Special Topics 222/6, 2013

ISSN: 1951-6355 (Print Edition)
ISSN: 1951-6401 (Electronic Edition)

© EDP Sciences and Springer-Verlag